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» How far will the avalanche go?

(Left) Fracture in Kern, April 2015 (Photo: Wikstrom Jones)
(Middle) Long run-out in Kern, April 2015, despite bare ground (Photo: Wikstrom Jones),

(Right) Road clearance at Bird Hill (Photo: ADOT&PF)



Bird Hill,
south-central Alaska

Photo: Wikstrom Jones

(Top) Road clearance
(Middle) Train hit by
avalanche

(Bottom) 1979 wet
avalanche cycle
(Photos: ADOT&PF)




Snow entrainment

* Quantitatively measured as growth \
|ndeX \\\\\\ Powder cloud

* Frontal, step and basal entrainment

Flow direction
* Counteracts development of shear i
gradients in the avalanche tail that Erosion
slows down the avalanche N &&\

Snow cover

I}

Entrainment

 Temperature of entrained snow
defines mechanical properties of
avalanche through flow regimes

Ground/crust

(Right) Cold, dry snow slab released. The avalanche entrained warm moist snow in the transition and
runout zones, leading to the formation of a heavy wet snow avalanche (Vera Valero et al., 2015)



Avalanche flow regimes

» Fluidization
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Avalanche flow regimes

» Lubrication
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Avalanche flow regimes
» Why do they matter?

Develop various flow structures

Change the kinetic energy balance

Changethe thermal energy balance

Reduce friction = long run-out distances



$” RAMMS

rapid mass movements simulation
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P#934 Whiskey during wet avalanche cycle Wet avalanche simulation #934 Whiskey, Bird Hill
in 1979. (Photo: AKDOT)




£ RAMMS

rapid mass movements simulation , i EX p e ri m e nta | S i m u | a ti O n S

1. Terrain 3. Entrained snow cover

Snowcover Ty

» One path - #934 Whiskey » Two entrainment zones

Drop height ~ 1000 m

Above 500 mas |
Snow cover depth 1 m, 0.5 m,
0.25m

/ N
- - - -

» DEM with 5 m resolution

: Snow cover temperature -5°C,
2. Release A TS AT -3°C, -1°C, 0°C
» 3 fracture depths ///// Below 500 ma s |
2 m (release volume 35206 — 50070 m?3) " Snow cover depth 1 m, 0.5 m,
1 m (release volume 17603 — 25035 m?) 0.25 m or bare ground
0.5 m (release volumes of 8801 — 12518 m3) Snow cover temperature -5°,

-3°,-1°,0°
» 3 released snow temperatures paired with density
-5°C (250 kg/m?)
-3°C (300 kg/m?)
0°C (500 kg/m?3)



Avalanche output

» Run-out distance — normalized as percentage to Beta point
distance

Classification

Class 1 (beyond Beta point)

Class 2 (shorter, upslope from Beta point)

» Velocities

» Flow heights

800 4

» Avalanche temperature ;o
.;: 400 -+ Beta point )
. . . ; 200 ﬁ[\wmulol

» Random kinetic energy production rates o4
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Project distance (m

» Meltwater production

Calculation of run-out distance as percentage of
Beta point distance in ArcMAP
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Preliminary results

» Summary

* Initial release conditions determined how changes in snow cover depth and temperature
influence the run-out distance.

Large release volumes (2 m fracture; 35206 - 50070 m3) generated Class 1 avalanches independent
of changes in snow cover conditions

For medium sized releases (1 m fracture, 17603 - 25035 m?3), all releases became Class 1
avalanches besides

» Release temperature -5°C or -3°C and bare ground below 500 m a s |

» Release temperature -3°C and snow cover temperature -3°C above and below 500 m a s |



Preliminary results

» Summary

For smallest releases (8801 - 12035 m?3), all releases became Class 2 avalanches besides

> 0°C releases with continuous snow entrainment above and below 500 ma s |

> -5°C releases which entrained -1°C snow or warmer above 500 m a s | and 0°C below
500mas|

» -3°Creleases which entrained 0°C snow of at least 0.5 m depth above 500 m a s | and
0°C of 0.25 m below 500 m a s |




Preliminary results

» Total eroded snow volume controlling run-out distance
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R@SU/Z'S Snow cover depth 0.25 m Snow cover depth 0.5 m
>500mas| >500mas|

» Snow cover depth

Shown: Release depth 0.5 m (release volume 8801m3.
Release temp. -5°C, -3°C above and -1°C below 500 m a s |

Total show cover heigh
Total show cover heigh

* Potential erosion depth # actual
erosion depth

* Snow entrainment rate - function of
density ratio between snow layer
and avalanche, and the velocity

* Length of the entrainment zone is

critical
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Results

» Flow regimes

} Fluidized regime

Release temp. -5°C Release temp. -3°C Release temp. -3°C
-5°C>500masl| -3°C>500masl -3°C>500masl| } Lubricated regime
-3°C<500masl -3°C<500masl -1°C<500masl

12710.00 -
10591.67 -
8473.33
6355.00
4236.67

2118.33

0.00 -

A Max average random energy (J/m2)
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Results

» Development of flow regimes and varying run-out distances

} Fluidized regime
Release temp. -5°C Release temp. -3°C Release temp. -3°C
-5°C>500masl| -3°C>500masl -3°C>500masl| } Lubricated regime
-3°C<500masl -3°C<500masl -1°C<500masl

12710.00 -
10591.67 -
8473.33
6355.00
4236.67 Simuiaton: 33

High production
rates of random
kinetic energy
(=high magnitude of
fluidization)

2118.33

0.00 -

A Max average random energy (J/m2)

Meltwater (mm/m2)

oo L R
400 600 800 1000 1200 1400
Proj. Distance (m)

Meltwater production
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Results

» Avalanche temperature and “dampening”

Release temp. -5°C Release temp. -3°C Release temp. -3°C
-5°C>500masl -3°C>500m as| -3°C>500masl
-3°C<500masl -3°C<500mas| -1°C<500 masl

|\ Max Core Temperature (Celsius), -
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» Numerical models in avalanche run-out distance

assessments

* Provide information for greater understanding of avalanche flow behavior

- Test a wide range of avalanche scenarios

* Provides relatively low cost investigation of:

- Risk factors

- Effectiveness of hazard mitigation strategies

- Sensitivity to initial snow cover conditions

oooooooooooo
Dreamstime.com



Up-next

» Re-simulations

IFSAR DEM with 5 m resolution 2 “Home made” DEM with 2 m resolution

-

* Higher resolution DEM —
more realistic flow in bare
ground terrain

e New RAMMS version with
temperature-dependent Beta
(=decay rate of RKE) to better
illustrate “dampening”
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Released -5°C

Results
T

» Friction

o
£
£
E
&
-
| Meltwater =
* “Dampening” —onset of production

high shear stress rates due
to increased basal or
internal friction

 "Dampened” flow
behavior exhibited by -3°C
releases that entrained
-3°C snow — too warm to Shear stress
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melting point
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2014-2015 avalanche season

& PN

P#934 Whiskey during wet avalanche cycle #934 Whiskey, Bird Hill for most of winter 2014-2015
in 1979. (Photo: AKDOT)
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$” RAMMS

rapid mass movements simulation
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Governing Equations

Flow height
Velocity

Vol. entrainment rate
Avalanche core
Gravitational acceleration
Frictional resistance
Gravitational Force
Centripetal acceleration
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N Normal pressure
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